- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Haitong (2)
-
Zheng, Luqi (2)
-
Chen, Mufeng (1)
-
Du, Shuting (1)
-
Lin, Jian-Yu (1)
-
Parvathy, Aradhana_Mohan (1)
-
Raghunathan, Anand (1)
-
Wei, Tiwei (1)
-
Xie, Feifan (1)
-
Ye, Peide D (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 23, 2026
-
Chen, Mufeng; Zheng, Luqi; Lin, Jian-Yu; Ye, Peide D; Li, Haitong (, IEEE)Zeroth-order fine-tuning eliminates explicit back-propagation and reduces memory overhead for large language models (LLMs), making it a promising approach for on-device fine-tuning tasks. However, existing memory-centric accelerators fail to fully leverage these benefits due to inefficiencies in balancing bit density, compute-in-memory capability, and endurance-retention trade-off. We present a reliability-aware, analog multi-level-cell (MLC) eDRAM-RRAM compute-in-memory (CIM) solution co-designed with zeroth-order optimization for language model fine-tuning. An RRAM-assisted eDRAM MLC programming scheme is developed, along with a process-voltage-temperature (PVT)-robust, large-sensing-window time-to-digital converter (TDC). The MLC-eDRAM integrating two-finger MOM provides 12× improvement in bit density over state-of-the-art MLC design. Another 5× density and 2× retention benefits are gained by adopting BEOL In2O3 FETs.more » « lessFree, publicly-accessible full text available May 18, 2026
An official website of the United States government
